PROPOSITIONAL LOGIC (3)

based on

Huth & Ruan Logic in Computer Science: Modelling and Reasoning about Systems Cambridge University Press, 2004

Russell & Norvig Artificial Intelligence: A Modern Approach Prentice Hall, 2010

- Semantic entailment: $\varphi \models \psi$ Are all models of formula φ also models of ψ ?
 - If $\varphi \models \bot$, the formula φ is unsatisfiable
 - We are interested in procedures for determining this relationship
- Approach 1: search for a proof that uses the rules of natural deduction
 - Natural deduction provides "natural" proofs, i.e. short arguments such as humans would give; however, such proofs can be hard to find by a computer

- Approach 2: employ the rules of resolution
 - Note that $\varphi \models \psi$ iff $\varphi \land \neg \psi \models \bot$
 - We first normalize formulas $\varphi\,$ and $\neg\psi\,$ in conjunctive normal form (giving $\,\varphi'\,$ and $\,\psi'\,$)
 - Then we repeatedly apply the *resolution rule* on $\varphi' \wedge \psi'$ till we either cannot derive new clauses or we derive \perp
 - If we derive ⊥ by means of resolution, it can be shown that the formula is unsatisfiable
 - Otherwise, it is satisfiable

- Example of resolution $\varphi = (a \lor b \lor c) \land (\neg a \lor a') \land (\neg b \lor b') \land (\neg c \lor c')$ $\varphi \vdash_{R} \varphi \land (a' \lor b \lor c) \land (a \lor b' \lor c) \land (a \lor b \lor c') = \varphi'$ $\vdash_{R} \varphi' \land (a' \lor b' \lor c) \land (a' \lor b \lor c') \land (a \lor b' \lor c') = \varphi''$ $\vdash_{R} \varphi'' \land (a' \lor b' \lor c')$
- In the general case, the repeated application of resolution can yield an exponential number of clauses...
 - We would prefer not to store and generate all of these

 Resolution can be applied efficiently on *definite* clauses, by means of the forward chaining algorithm

```
C = initial set of definite clauses

repeat

if there is a clause p_1, ..., p_n \rightarrow q in C where p_1, ..., p_n are

facts in C then

add fact q to C ←

end if

until no fact could be added

return all facts in C
```

This algorithm is complete for facts: any fact that is entailed, will be derived.

The story continues

Can we use the ideas of forward chaining and resolution in a more efficient algorithm?

Deciding satisfiability of CNF formulas: DPLL

- The DPLL algorithm for deciding satisfiability was proposed by Davis, Putman, Logeman and Loveland (1960, 1962)
- General ideas:
 - we perform **depth-first** over the space of all possible valuations
 - based on a partial valuation, we simplify the formula to remove redundant literals
 - based on the formula, we fix the valuation of as many atoms as possible

DPLL: Simplification

- If the valuation of atom *p* is **"true"**
 - every clause in which literal p occurs, is removed
 - from every clause in which p is negated, $\neg p$ is removed

$$\{p = true\}, (p \lor q) \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \lor \neg r) \\ \{p = true\}, (\neg p \lor q) \land (q \lor \neg r) \Rightarrow \{p = true\}, (q \land (q \lor \neg r)) \\ \land \vdots \\ \downarrow \vdots \\$$

similar to resolution

- Similarly, if the valuation of atom p is "false"
 - every clause in which literal $\neg p$ occurs, is removed
 - from every clause in which *p* occurs, literal *p* is removed

DPLL: Simplification

• Special case 1 of simplification is when an empty clause is obtained, i.e. the clause \perp

$$\{p = true\}, \neg p \land (q \lor r) \implies \{p = true\}, \bot \land (q \lor r) \\ \Rightarrow \{p = true\}, \bot \end{cases}$$

 in this case the current valuation can never be extended to a valuation that satisfies the formula

Special case 2 of simplification is when the empty CNF formula is obtained, i.e. the formula ⊤

$$\{p=false\}, \neg p \Rightarrow \{p=false\}, \top$$

• in this case we have found a satisfying valuation

DPLL: Fixing pure symbols

If an atom always has the same sign in a formula (i.e., the literals p and ¬p do not occur at the same time), the atom is called *pure*. We fix the valuation of a pure atom to the value indicated by this sign

$$\emptyset, (p \lor q) \land (p \lor \neg r) \Rightarrow \{p = true\}, (p \lor q) \land (p \lor \neg r)$$
$$\emptyset, (\neg p \lor q) \land (\neg p \lor \neg r) \Rightarrow \{p = false\}, (\neg p \lor q) \land (\neg p \lor \neg r)$$

 Note: we can apply simplification afterwards and remove redundant clauses

DPLL: Fixing unit clauses

 If a clause consists of only one literal (positive or negative), this clause is called a *unit clause*. We fix the valuation of an atom occurring in a unit clause to the value indicated by the sign of the literal.

$$\emptyset, p \land (q \lor r) \Rightarrow \{p = true\}, p \land (q \lor r)$$

 Also here, we apply simplification afterwards; after simplification, we may have new unit clauses, which we can use again; this process is called *unit propagation*

$$\begin{split} & \emptyset, p \land (\neg p \lor r) \\ & \Rightarrow \{p = true\}, p \land (\neg p \lor r) \\ & \Rightarrow \{p = true\}, r \qquad \Rightarrow \{p = true, r = true\}, r \end{split}$$

DPLL Algorithm

DPLL (valuations V, formula φ) φ' = simplification of φ based on V if φ' is an empty formula **then return** true if φ' contains the empty clause **then return** false if φ' contains a pure atom p with sign v then return DPLL($V \cup \{p=\nu\}, \varphi'$) if φ' contains a unit clause for atom *p* with sign *v* then **return** DPLL($V \cup \{p=v\}, \varphi'$) let p be an arbitrary atom occurring in φ' **if** DPLL($V \cup \{p=true\}, \varphi'$) **then return** true else return DPLL($V \cup \{p=false\}, \varphi'$)

Branching

Component analysis: if the clauses can be partitioned such that variables are not shared between clauses in different partitions, we solve the partitions independently

$$(p \lor q) \land (\neg p) \land (r \lor s) \land r$$

component 1 component 2

 Value and variable ordering: when choosing the next atom to fix, try to be clever (i.e. pick one that occurs in many clauses)

Clause learning: if a contradiction is found, try to find out which assignments caused this contradiction, and add a clause (entailed by the original CNF formula) to avoid this combination of assignments in the future

Example

$$\begin{array}{l} (p \lor r) \land (q \lor r) \land (\neg p \lor \neg q \lor \neg r \lor \neg t) \\ \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t) \end{array}$$

Note: no unit propagation or pure literals present, branching necessary.

 $(p \lor r) \land (q \lor r) \land (\neg p \lor \neg q \lor r \lor t) \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t)$ No propagation possible, branch with *p*=true $(q \lor r) \land (\neg q \lor r \lor t) \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t)$ No propagation possible, branch with *q*=true $(r \lor t) \land (\neg r \lor t) \land (r \lor \neg t) \land (\neg r \lor \neg t)$ No propagation possible, branch with *r*=true $t \wedge \neg t$ Conflict found in $t \rightarrow$ apply resolution on t for the original versions of conflicting clauses $(\neg r \lor t) \land (\neg r \lor \neg t)$ \rightarrow clause $\neg r$ is entailed by the original formula, add $\neg r$ as learned clause to original formula \rightarrow apply propagation on this formula new \rightarrow *p*=*true*, *q*=*true*, *r*=*false* \rightarrow search stops

- <u>Random restarts</u>: if the search is unsuccessful too long, stop the search, and start from scratch with learned clauses (and possibly a different variable/value ordering)
- <u>Clever indexing</u>: use heavily optimized data structures for storing clauses, atoms, and lists of clauses in which atoms occur
- Portfolios: run several different solvers for a short time; use data gathered from these runs to select the final solver to execute

Applications of SAT solvers

Model checking

- Planning
- Scheduling
- Experiment design
- Protocol design (networks)
- Multi-agent systems
- E-commerce
- Software package management
- Learning automata

Progress in SAT solvers

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

