PROPOSITIONAL LOGIC (3)

based on

Huth \& Ruan
Logic in Computer Science:
Modelling and Reasoning about Systems
Cambridge University Press, 2004
Russell \& Norvig
Artificial Intelligence:
A Modern Approach
Prentice Hall, 2010

The story till now...

- Semantic entailment: $\varphi \models \psi$

Are all models of formula φ also models of ψ ?

- If $\varphi \models \perp$, the formula φ is unsatisfiable
- We are interested in procedures for determining this relationship
- Approach 1: search for a proof that uses the rules of natural deduction
- Natural deduction provides "natural" proofs, i.e. short arguments such as humans would give; however, such proofs can be hard to find by a computer

The story till now...

- Approach 2: employ the rules of resolution
- Note that $\varphi \models \psi$ iff $\varphi \wedge \neg \psi \models \perp$
- We first normalize formulas φ and $\neg \psi$ in conjunctive normal form (giving φ^{\prime} and ψ^{\prime})
- Then we repeatedly apply the resolution rule on $\varphi^{\prime} \wedge \psi^{\prime}$ till we either cannot derive new clauses or we derive \perp
- If we derive \perp by means of resolution, it can be shown that the formula is unsatisfiable
- Otherwise, it is satisfiable

The story till now...

- Example of resolution
$\varphi=(a \vee b \vee c) \wedge\left(\neg a \vee a^{\prime}\right) \wedge\left(\neg b \vee b^{\prime}\right) \wedge\left(\neg c \vee c^{\prime}\right)$
$\varphi \vdash_{R} \varphi \wedge\left(a^{\prime} \vee b \vee c\right) \wedge\left(a \vee b^{\prime} \vee c\right) \wedge\left(a \vee b \vee c^{\prime}\right)=\varphi^{\prime}$
$\vdash_{R} \quad \varphi^{\prime} \wedge\left(a^{\prime} \vee b^{\prime} \vee c\right) \wedge\left(a^{\prime} \vee b \vee c^{\prime}\right) \wedge\left(a \vee b^{\prime} \vee c^{\prime}\right)=\varphi^{\prime \prime}$
$\vdash_{R} \quad \varphi^{\prime \prime} \wedge\left(a^{\prime} \vee b^{\prime} \vee c^{\prime}\right)$
- In the general case, the repeated application of resolution can yield an exponential number of clauses...
- We would prefer not to store and generate all of these

The story till now...

- Resolution can be applied efficiently on definite clauses, by means of the forward chaining algorithm

C = initial set of definite clauses

repeat
if there is a clause $p_{1} \ldots, p_{n} \rightarrow q$ in \boldsymbol{C} where p_{r}, \ldots, p_{n} are facts in \boldsymbol{C} then add fact q to $C \boldsymbol{C}$ end if

Resolution

until no fact could be added return all facts in C

This algorithm is complete for facts: any fact that is entailed, will be derived.

The story continues

- Can we use the ideas of forward chaining and resolution in a more efficient algorithm?

Deciding satisfiability of CNF formulas: DPLL

- The DPLL algorithm for deciding satisfiability was proposed by Davis, Putman, Logeman and Loveland (1960, 1962)
- General ideas:
- we perform depth-first over the space of all possible valuations
- based on a partial valuation, we simplify the formula to remove redundant literals
- based on the formula, we fix the valuation of as many atoms as possible

DPLL: Simplification

- If the valuation of atom p is "true"
- every clause in which literal p occurs, is removed
- from every clause in which p is negated, $\neg p$ is removed

$$
\begin{aligned}
& \{p=\operatorname{true}\},(p \vee q) \wedge(q \vee \neg r) \Rightarrow\{p=\operatorname{true}\},(q \vee \neg r) \\
& \{p=\operatorname{true}\},(\neg p \vee q) \wedge(q \vee \neg r) \Rightarrow\{p=\operatorname{true}\},(q \wedge(q \vee \neg r))
\end{aligned}
$$

similar to resolution

- Similarly, if the valuation of atom p is "false"
- every clause in which literal $\neg p$ occurs, is removed
- from every clause in which p occurs, literal p is removed

DPLL: Simplification

- Special case 1 of simplification is when an empty clause is obtained, i.e. the clause \perp

$$
\begin{aligned}
\{p=\operatorname{true}\}, \neg p \wedge(q \vee r) & \Rightarrow\{p=\operatorname{true}\}, \perp \wedge(q \vee r) \\
& \Rightarrow\{p=\text { true }\}, \perp
\end{aligned}
$$

- in this case the current valuation can never be extended to a valuation that satisfies the formula
- Special case 2 of simplification is when the empty CNF formula is obtained, i.e. the formula \top

$$
\{\mathrm{p}=\text { false }\}, \neg p \Rightarrow\{p=\text { false }\}, \top
$$

- in this case we have found a satisfying valuation

DPLL: Fixing pure symbols

- If an atom always has the same sign in a formula (i.e., the literals p and $\neg p$ do not occur at the same time), the atom is called pure. We fix the valuation of a pure atom to the value indicated by this sign

$$
\begin{aligned}
& \emptyset,(p \vee q) \wedge(p \vee \neg r) \Rightarrow\{p=\text { true }\},(p \vee q) \wedge(p \vee \neg r) \\
& \emptyset,(\neg p \vee q) \wedge(\neg p \vee \neg r) \Rightarrow\{p=\text { false }\},(\neg p \vee q) \wedge(\neg p \vee \neg r)
\end{aligned}
$$

- Note: we can apply simplification afterwards and remove redundant clauses

DPLL: Fixing unit clauses

- If a clause consists of only one literal (positive or negative), this clause is called a unit clause. We fix the valuation of an atom occurring in a unit clause to the value indicated by the sign of the literal.

$$
\emptyset, p \wedge(q \vee r) \Rightarrow\{p=\operatorname{true}\}, p \wedge(q \vee r)
$$

- Also here, we apply simplification afterwards; after simplification, we may have new unit clauses, which we can use again; this process is called unit propagation

$$
\begin{aligned}
& \emptyset, p \wedge(\neg p \vee r) \\
& \Rightarrow\{p=\operatorname{true}\}, p \wedge(\neg p \vee r) \\
& \Rightarrow\{p=\text { true }\}, r \quad \Rightarrow\{p=\operatorname{true}, r=\operatorname{true}\}, r
\end{aligned}
$$

DPLL Algorithm

DPLL (valuations V, formula φ)
$\varphi^{\prime}=$ simplification of φ based on V
if φ^{\prime} is an empty formula then return true
if φ^{\prime} contains the empty clause then return false
if φ^{\prime} contains a pure atom p with $\operatorname{sign} v$ then
return $\operatorname{DPLL}\left(V \cup\{p=v\}, \varphi^{\prime}\right)$
if φ^{\prime} contains a unit clause for atom p with $\operatorname{sign} v$ then
return $\operatorname{DPLL}\left(V \cup\{p=v\}, \varphi^{\prime}\right)$
let p be an arbitrary atom occurring in φ^{\prime}
if $\operatorname{DPLL}\left(V \cup\{p=t r u e\}, \varphi^{\prime}\right)$ then return true
else return $\operatorname{DPLL}\left(V \cup\{p=\text { false }\}, \varphi^{\prime}\right)^{\boldsymbol{}}$

Branching

Optimizations of DPLL

- Component analysis: if the clauses can be partitioned such that variables are not shared between clauses in different partitions, we solve the partitions independently

$$
(\underbrace{(p \vee q) \wedge(\neg p)}_{\text {component } \mathbf{1}} \underbrace{\wedge(r \vee s) \wedge r}_{\text {component } \mathbf{2}}
$$

- Value and variable ordering: when choosing the next atom to fix, try to be clever (i.e. pick one that occurs in many clauses)

Optimizations of DPLL

- Clause learning: if a contradiction is found, try to find out which assignments caused this contradiction, and add a clause (entailed by the original CNF formula) to avoid this combination of assignments in the future

Example

$(p \vee r) \wedge(q \vee r) \wedge(\neg p \vee \neg q \vee \neg r \vee \neg t)$
$\wedge(\neg r \vee t) \wedge(r \vee \neg t) \wedge(\neg r \vee \neg t)$
Note: no unit propagation or pure literals present, branching necessary.

Optimizations of DPLL

$$
(p \vee r) \wedge(q \vee r) \wedge(\neg p \vee \neg q \vee r \vee t) \wedge(\neg r \vee t) \wedge(r \vee \neg t) \wedge(\neg r \vee \neg t)
$$

No propagation possible, branch with $p=$ true

$$
(q \vee r) \wedge(\neg q \vee r \vee t) \wedge(\neg r \vee t) \wedge(r \vee \neg t) \wedge(\neg r \vee \neg t)
$$

No propagation possible, branch with $q=$ true $(r \vee t) \wedge(\neg r \vee t) \wedge(r \vee \neg t) \wedge(\neg r \vee \neg t)$
No propagation possible, branch with $r=$ true $t \wedge \neg t$
Conflict found in $t \rightarrow$ apply resolution on t for the original versions of conflicting clauses $(\neg r \vee t) \wedge(\neg r \vee \neg t)$
\rightarrow clause $\neg r$ is entailed by the original formula, add $\neg r$ as learned clause to original formula \rightarrow apply propagation on this formula new $\rightarrow p=$ true, $q=$ true, $r=f a l s e ~ \rightarrow$ search stops

Optimizations of DPLL

- Random restarts: if the search is unsuccessful too long, stop the search, and start from scratch with learned clauses (and possibly a different variable/value ordering)
- Clever indexing: use heavily optimized data structures for storing clauses, atoms, and lists of clauses in which atoms occur
- Portfolios: run several different solvers for a short time; use data gathered from these runs to select the final solver to execute

Applications of SAT solvers

- Model checking
- Planning
- Scheduling
- Experiment design
- Protocol design (networks)
- Multi-agent systems
- E-commerce
- Software package management
- Learning automata
-...

Progress in SAT solvers

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

